Influence of Laminated Textile Structures on Mechanical Performance of NF-Epoxy Composites

نویسندگان

  • A. R. Azrin Hani
  • R. Ahmad
  • M. Mariatti
چکیده

Textile structures are engineered and fabricated to meet worldwide structural applications. Nevertheless, research varying textile structure on natural fibre as composite reinforcement was found to be very limited. Most of the research is focusing on short fibre and random discontinuous orientation of the reinforcement structure. Realizing that natural fibre (NF) composite had been widely developed to be used as synthetic fibre composite replacement, this research attempted to examine the influence of woven and cross-ply laminated structure towards its mechanical performances. Laminated natural fibre composites were developed using hand lay-up and vacuum bagging technique. Impact and flexural strength were investigated as a function of fibre type (coir and kenaf) and reinforcement structure (imbalanced plain woven, 0°/90° cross-ply and +45°/-45° cross-ply). Multi-level full factorial design of experiment (DOE) and analysis of variance (ANOVA) was employed to impart data as to how fibre type and reinforcement structure parameters affect the mechanical properties of the composites. This systematic experimentation has led to determination of significant factors that predominant influences the impact and flexural properties of the textile composites. It was proven that both fibre type and reinforcement structure demonstrated significant difference results. Overall results indicated that coir composite and woven structure exhibited better impact and flexural strength. Yet, cross-ply composite structure demonstrated better fracture resistance. Keywords—Cross-ply composite, Flexural strength, Impact strength, Textile natural fibre composite, Woven composite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Tensile Characteristics of an Epoxy Matrix Com-posite with Uni-Directional and Hybrid Tissue Natural Hemp Fibers

Using natural hemp fibers to reinforce the tensile characteristics of polymer matrix composites is investigated in this article. The fibers were applied to the epoxy matrix in unidirectional and hybrid tissue forms. After preparation of standard tensile stress test specimens via manual layup, the standard tensile test was done.  Young’s modulus, ultimate tensile stress, and the amount of absorb...

متن کامل

Application of Pulse Method to Incremental Slitting Measurement of Residual Stresses in Laminated Composites

In this research, the incremental slitting method was employed to determine throughthickness residual stress profile of a carbon/epoxy laminate. The method involves measuring strains at the back surface of the stressed specimen, while a narrow slit is cut by a CNC milling machine progressively from the top surface of the specimen. "Pulse Method" was selected as the computational approach for th...

متن کامل

Effects of Fiber Volume on Modal Response of Through-Thickness Angle Interlock Textile Composites

Prior static studies of three-dimensionally woven carbon/epoxy textile composites show that large interlaminar normal and shear strains occur as a result of layer waviness under static compression loading. This study addresses the dynamic response of 3D through-thickness angle interlock textile composites, and how interaction between different layer waviness influences the modal frequencies. Th...

متن کامل

Carbon Fiber Epoxy Composites for Both Strengthening and Health Monitoring of Structures

This paper presents a study of the electrical and mechanical behavior of several continuous carbon fibers epoxy composites for both strengthening and monitoring of structures. In these composites, the arrangement of fibers was deliberately diversified to test and understand the ability of the composites for self-sensing low strains. Composites with different arrangements of fibers and textile w...

متن کامل

Experimental Study on Amine-Functionalized Carbon Nanotubes’ Effect on the Thermomechanical Properties of CNT/Epoxy Nano-composites

This paper investigated the effect of the amine-functionalized carbon nanotubes (CNTs) on the thermomechanical properties of CNT/epoxy nanocomposites. Mechanical stirring and ultra-sonication were utilized to uniformly disperse CNTs into the epoxy matrix. Non-functionalized and amine-functionalized CNTs with different weight percentages (wt. %) were mixed into the epoxy resin. Using standard te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013